报告题目:Well-Posedness for Singular McKean-Vlasov Stochastic Differential Equations
主 讲 人:黄兴
单 位:天津大学应用数学中心
时 间:5月29日16:00
地 点:公司北研教室
摘 要:
By using Zvonkin's transform and the heat kernel parameter expansion with respect to a frozen SDE, the well-posedness is proved for a McKean-Vlasov SDE with distribution dependent noise and singular drift, where the drift may be discontinuous in both weak topology and total variation distance, and up to the multiplication of a linear growth term in distribution, it is bounded by the sum of a bounded term and a space-time integrable term. This extends existing results derived in the literature for distribution independent noise or time-space integrable drift.
简 介:
黄兴,博士,任职于天津大学应用数学中心,主要从事(系数依赖于分布的)随机微分方程、随机泛函微分方程的的研究。研究工作发表于《J. Differential Equations》,《Stochastic Process. Appl.》,《Discrete Contin. Dyn. Syst.》,《Nonlinear Anal.》,《Electron. J. Probab.》等国内外期刊。